.. _testtool: .. |ss| raw:: html .. |se| raw:: html NETCONF testtool ---------------- **NETCONF testtool is a set of standalone runnable jars that can:** - Simulate NETCONF devices (suitable for scale testing) - Stress/Performance test NETCONF devices - Stress/Performance test RESTCONF devices These jars are part of OpenDaylight’s controller project and are built from the NETCONF codebase in OpenDaylight. **Nexus contains 3 executable tools:** - executable.jar - device simulator - stress.client.tar.gz - NETCONF stress/performance measuring tool - perf-client.jar - RESTCONF stress/performance measuring tool .. tip:: Each executable tool provides help. Just invoke ``java -jar --help`` NETCONF device simulator ~~~~~~~~~~~~~~~~~~~~~~~~ NETCONF testtool (or NETCONF device simulator) is a tool that - Simulates 1 or more NETCONF devices - Is suitable for scale, performance or crud testing - Uses core implementation of NETCONF server from OpenDaylight - Allows for automatic sending of connector configurations through RESTCONF to the controller. This makes it easy for the OpenDaylight distribution (Karaf) to connect to all simulated devices once the simulator starts. - Provides broad configuration options - Can start a fully fledged MD-SAL datastore - Supports notifications Building testtool ^^^^^^^^^^^^^^^^^ 1. Check out latest NETCONF repository from `git `__ 2. Move into the ``opendaylight/netconf/tools/netconf-testtool/`` folder 3. Build testtool using the ``mvn clean install`` command Downloading testtool ^^^^^^^^^^^^^^^^^^^^ Netconf-testtool is now part of default maven build profile for controller and can be also downloaded from nexus. The executable jars for testtool can be found by release at this parent directory: `nexus-artifacts `__ Running testtool ^^^^^^^^^^^^^^^^ 1. After successfully building or downloading, move into the ``opendaylight/netconf/tools/netconf-testtool/target/`` folder and there is file ``netconf-testtool-[VERSION]-executable.jar`` (or if downloaded from nexus just take that \*-executable.jar file) 2. Execute this file using, e.g.: :: java -jar netconf-testtool-[VERSION]-executable.jar This execution runs the testtool with default for all parameters and you should see this log output from the testtool : :: 10:31:08.206 [main] INFO o.o.c.n.t.t.NetconfDeviceSimulator - Starting 1, SSH simulated devices starting on port 17830 10:31:08.675 [main] INFO o.o.c.n.t.t.NetconfDeviceSimulator - All simulated devices started successfully from port 17830 to 17830 Default Parameters '''''''''''''''''' The default parameters for testtool are: - Use SSH - Run 1 simulated device - Device port is 17830 - YANG modules used by device are only: ietf-netconf-monitoring, ietf-yang-types, ietf-inet-types (these modules are required for device in order to support NETCONF monitoring and are included in the netconf-testtool) - Connection timeout is set to 30 minutes (quite high, but when testing with 10000 devices it might take some time for all of them to fully establish a connection) - Debug level is set to false - Other default parameters can be seen with ``--help`` option Verifying testtool ^^^^^^^^^^^^^^^^^^ To verify that the simulated device is up and running, we can try to connect to it using command line ssh tool. Execute this command to connect to the device: :: ssh admin@localhost -p 17830 -s netconf Just accept the server with yes (if required) and provide any password (testtool accepts all users with all passwords). You should see the hello message sent by simulated device. Testtool help ^^^^^^^^^^^^^ :: usage: netconf testtool [-h] [--edit-content EDIT-CONTENT] [--async-requests {true,false}] [--thread-amount THREAD-AMOUNT] [--throttle THROTTLE] [--controller-auth-username CONTROLLER-AUTH-USERNAME] [--controller-auth-password CONTROLLER-AUTH-PASSWORD] [--controller-ip CONTROLLER-IP] [--controller-port CONTROLLER-PORT] [--device-count DEVICES-COUNT] [--devices-per-port DEVICES-PER-PORT] [--schemas-dir SCHEMAS-DIR] [--notification-file NOTIFICATION-FILE] [--initial-config-xml-file INITIAL-CONFIG-XML-FILE] [--starting-port STARTING-PORT] [--generate-config-connection-timeout GENERATE-CONFIG-CONNECTION-TIMEOUT] [--generate-config-address GENERATE-CONFIG-ADDRESS] [--generate-configs-batch-size GENERATE-CONFIGS-BATCH-SIZE] [--distribution-folder DISTRO-FOLDER] [--ssh {true,false}] [--exi {true,false}] [--debug {true,false}] [--md-sal {true,false}] [--time-out TIME-OUT] [--ip IP] [--thread-pool-size THREAD-POOL-SIZE] [--rpc-config RPC-CONFIG] netconf testtool named arguments: -h, --help show this help message and exit --edit-content EDIT-CONTENT --async-requests {true,false} (default: false) --thread-amount THREAD-AMOUNT The number of threads to use for configuring devices. (default: 1) --throttle THROTTLE Maximum amount of async requests that can be open at a time, with mutltiple threads this gets divided among all threads (default: 5000) --controller-auth-username CONTROLLER-AUTH-USERNAME Username for HTTP basic authentication to destination controller. (default: admin) --controller-auth-password CONTROLLER-AUTH-PASSWORD Password for HTTP basic authentication to destination controller. (default: admin) --controller-ip CONTROLLER-IP Ip of controller if available it will be used for spawning netconf connectors via topology configuration as a part of URI(http://:/rests/data/...) otherwise it will just start simulated devices and skip the execution of PATCH requests --controller-port CONTROLLER-PORT Port of controller if available it will be used for spawning netconf connectors via topology configuration as a part of URI(http://:/rests/data/...) otherwise it will just start simulated devices and skip the execution of PATCH requests --device-count DEVICES-COUNT Number of simulated netconf devices to spin. This is the number of actual ports open for the devices. (default: 1) --devices-per-port DEVICES-PER-PORT Amount of config files generated per port to spoof more devices than are actually running (default: 1) --schemas-dir SCHEMAS-DIR Directory containing yang schemas to describe simulated devices. Some schemas e.g. netconf monitoring and inet types are included by default --notification-file NOTIFICATION-FILE Xml file containing notifications that should be sent to clients after create subscription is called --initial-config-xml-file INITIAL-CONFIG-XML-FILE Xml file containing initial simulatted configuration to be returned via get-config rpc --starting-port STARTING-PORT First port for simulated device. Each other device will have previous+1 port number (default: 17830) --generate-config-connection-timeout GENERATE-CONFIG-CONNECTION-TIMEOUT Timeout to be generated in initial config files (default: 1800000) --generate-config-address GENERATE-CONFIG-ADDRESS Address to be placed in generated configs (default: 127.0.0.1) --generate-configs-batch-size GENERATE-CONFIGS-BATCH-SIZE Number of connector configs per generated file (default: 1) --distribution-folder DISTRO-FOLDER Directory where the karaf distribution for controller is located --ssh {true,false} Whether to use ssh for transport or just pure tcp (default: true) --exi {true,false} Whether to use exi to transport xml content (default: true) --debug {true,false} Whether to use debug log level instead of INFO (default: false) --md-sal {true,false} Whether to use md-sal datastore instead of default simulated datastore. (default: false) --time-out TIME-OUT the maximum time in seconds for executing each PATCH request (default: 20) --ip IP Ip address which will be used for creating a socket address.It can either be a machine name, such as java.sun.com, or a textual representation of its IP address. (default: 0.0.0.0) --thread-pool-size THREAD-POOL-SIZE The number of threads to keep in the pool, when creating a device simulator. Even if they are idle. (default: 8) --rpc-config RPC-CONFIG Rpc config file. It can be used to define custom rpc behavior, or override the default one.Usable for testing buggy device behavior. Supported operations ^^^^^^^^^^^^^^^^^^^^ Testtool default simple datastore supported operations: get-schema returns YANG schemas loaded from user specified directory, edit-config always returns OK and stores the XML from the input in a local variable available for get-config and get RPC. Every edit-config replaces the previous data, commit always returns OK, but does not actually commit the data, get-config returns local XML stored by edit-config, get returns local XML stored by edit-config with netconf-state subtree, but also supports filtering. (un)lock returns always OK with no lock guarantee create-subscription returns always OK and after the operation is triggered, provided NETCONF notifications (if any) are fed to the client. No filtering or stream recognition is supported. Note: when operation="delete" is present in the payload for edit-config, it will wipe its local store to simulate the removal of data. When using the MD-SAL datastore testtool behaves more like normal NETCONF server and is suitable for crud testing. create-subscription is not supported when testtool is running with the MD-SAL datastore. Notification support ^^^^^^^^^^^^^^^^^^^^ Testtool supports notifications via the ``--notification-file`` switch. To trigger the notification feed, create-subscription operation has to be invoked. The XML file provided should look like this example file: :: 2011-01-04T12:30:46 single no delay ]]> 2 5 XXXX scheduled 5 times 10 seconds each ]]> 2 XXXX single with delay ]]> Connecting testtool with controller Karaf distribution ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ Auto connect to OpenDaylight '''''''''''''''''''''''''''' You can set up the testtool to automatically connect to the Controller. When you provide the ``--controller-ip`` and ``--controller-port`` parameters, the testtool will send a PATCH request to the Controller netconf-topology with the device connector configuration. :: java -jar netconf-testtool-[VERSION]-executable.jar --device-count 10 --controller-ip 127.0.0.1 --controller-port 8181 --debug true Running testtool and OpenDaylight on different machines ''''''''''''''''''''''''''''''''''''''''''''''''''''''' The testtool binds by default to 0.0.0.0 so it should be accessible from remote machines. However you need to set the parameter "generate-config-address" (when using autoconnect) to the address of machine where testtool will be run so OpenDaylight can connect. The default value is localhost. Executing operations via RESTCONF on a mounted simulated device ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ Simulated devices support basic RPCs for editing their config. This part shows how to edit data for simulated device via RESTCONF. Test YANG schema '''''''''''''''' The controller and RESTCONF assume that the data that can be manipulated for mounted device is described by a YANG schema. For demonstration, we will define a simple YANG model: :: module test { yang-version 1; namespace "urn:opendaylight:test"; prefix "tt"; revision "2014-10-17"; container cont { leaf l { type string; } } } Save this schema in file called ``test@2014-10-17.yang`` and store it a directory called test-schemas/, e.g., your home folder. Editing data for simulated device ''''''''''''''''''''''''''''''''' - Start OpenDaylight - Install odl-netconf-topology and odl-restconf-nb features - Start the device with following command: :: java -jar netconf-testtool-[VERSION]-executable.jar --controller-ip 127.0.0.1 --controller-port 8181 --debug true --schemas-dir ~/test-schemas/ - Check that you can see config data for simulated device by executing GET request to: :: http://localhost:8181/rests/data/network-topology:network-topology/topology=topology-netconf/node=17830-sim-device/yang-ext:mount?content=config - The data should be just and empty data container - Now execute edit-config request by executing a POST request to: :: http://localhost:8181/rests/data/network-topology:network-topology/topology=topology-netconf/node=17830-sim-device/yang-ext:mount with headers: :: Accept application/xml Content-Type application/xml and payload: :: Content - Response should be 201 with empty body - Check that you can see modified config data for simulated device by executing GET request to :: http://localhost:8181/rests/data/network-topology:network-topology/topology=topology-netconf/node=17830-sim-device/yang-ext:mount?content=config - Check that you can see the same modified data in operational for simulated device by executing GET request to :: http://localhost:8181/rests/data/network-topology:network-topology/topology=topology-netconf/node=17830-sim-device/yang-ext:mount?content=nonconfig .. warning:: Data will be mirrored in operational datastore only when using the default simple datastore. Testing User defined RPC ^^^^^^^^^^^^^^^^^^^^^^^^ The NETCONF test-tool allows using custom RPC. Custom RPC needs to be defined in yang model provide to test-tool along with parameter ``--schemas-dir``. The input and output of the custom RPC should be provided with ``--rpc-config`` parameter as a path to the file containing definition of input and output. The format of the custom RPC file is xml as shown below. Example YANG model file (stored in folder ~/test-schemas/): :: module example-ops { namespace "urn:example-ops:reboot"; prefix "ops"; import ietf-yang-types { prefix "yang"; } revision "2016-07-07" { description "Initial version."; reference "example document."; } rpc reboot { description "Reboot operation."; input { leaf delay { type uint32; units "seconds"; default 0; description "Delay in seconds."; } leaf message { type string; description "Log message."; } } } } Example payload (RPC config file ~/tmp/customrpc.xml): :: 300 message Start the device with following command: :: java -jar netconf-testtool-[VERSION]-executable.jar --controller-ip 127.0.0.1 --controller-port 8181 --schemas-dir ~/test-schemas/ --rpc-config ~/tmp/customrpc.xml --debug=true Example of use: :: POST http://localhost:8181/rests/operations/network-topology:network-topology/topology=topology-netconf/node=17830-sim-device/yang-ext:mount/example-ops:reboot With body: :: 300 message If successful the response should be 204. .. note:: A working example of user defined RPC can be found in TestToolTest.java class of the tools[netconf-testtool] project. Known problems ^^^^^^^^^^^^^^ Slow creation of devices on virtual machines '''''''''''''''''''''''''''''''''''''''''''' When testtool seems to take unusually long time to create the devices use this flag when running it: :: -Dorg.apache.sshd.registerBouncyCastle=false Too many files open ''''''''''''''''''' When testtool or OpenDaylight starts to fail with TooManyFilesOpen exception, you need to increase the limit of open files in your OS. To find out the limit in linux execute: :: ulimit -a Example sufficient configuration in linux: :: core file size (blocks, -c) 0 data seg size (kbytes, -d) unlimited scheduling priority (-e) 0 file size (blocks, -f) unlimited pending signals (-i) 63338 max locked memory (kbytes, -l) 64 max memory size (kbytes, -m) unlimited open files (-n) 500000 pipe size (512 bytes, -p) 8 POSIX message queues (bytes, -q) 819200 real-time priority (-r) 0 stack size (kbytes, -s) 8192 cpu time (seconds, -t) unlimited max user processes (-u) 63338 virtual memory (kbytes, -v) unlimited file locks (-x) unlimited To set these limits edit file: /etc/security/limits.conf, for example: :: * hard nofile 500000 * soft nofile 500000 root hard nofile 500000 root soft nofile 500000 "Killed" '''''''' The testtool might end unexpectedly with a simple message: "Killed". This means that the OS killed the tool due to too much memory consumed or too many threads spawned. To find out the reason on linux you can use following command: :: dmesg | egrep -i -B100 'killed process' Also take a look at this file: /proc/sys/kernel/threads-max. It limits the number of threads spawned by a process. Sufficient (but probably much more than enough) value is, e.g., 126676