module ietf-crypto-types { yang-version 1.1; namespace "urn:ietf:params:xml:ns:yang:ietf-crypto-types"; prefix ct; import ietf-yang-types { prefix yang; reference "RFC 6991: Common YANG Data Types"; } import ietf-netconf-acm { prefix nacm; reference "RFC 8341: Network Configuration Access Control Model"; } organization "IETF NETCONF (Network Configuration) Working Group"; contact "WG Web: https://datatracker.ietf.org/wg/netconf WG List: NETCONF WG list Author: Kent Watsen "; description "This module defines common YANG types for cryptographic applications. Copyright (c) 2024 IETF Trust and the persons identified as authors of the code. All rights reserved. Redistribution and use in source and binary forms, with or without modification, is permitted pursuant to, and subject to the license terms contained in, the Revised BSD License set forth in Section 4.c of the IETF Trust's Legal Provisions Relating to IETF Documents (https://trustee.ietf.org/license-info). This version of this YANG module is part of RFC AAAA (https://www.rfc-editor.org/info/rfcAAAA); see the RFC itself for full legal notices. The key words 'MUST', 'MUST NOT', 'REQUIRED', 'SHALL', 'SHALL NOT', 'SHOULD', 'SHOULD NOT', 'RECOMMENDED', 'NOT RECOMMENDED', 'MAY', and 'OPTIONAL' in this document are to be interpreted as described in BCP 14 (RFC 2119) (RFC 8174) when, and only when, they appear in all capitals, as shown here."; revision 2024-02-08 { description "Initial version"; reference "RFC AAAA: YANG Data Types and Groupings for Cryptography"; } /****************/ /* Features */ /****************/ feature one-symmetric-key-format { description "Indicates that the server supports the 'one-symmetric-key-format' identity."; } feature one-asymmetric-key-format { description "Indicates that the server supports the 'one-asymmetric-key-format' identity."; } feature symmetrically-encrypted-value-format { description "Indicates that the server supports the 'symmetrically-encrypted-value-format' identity."; } feature asymmetrically-encrypted-value-format { description "Indicates that the server supports the 'asymmetrically-encrypted-value-format' identity."; } feature cms-enveloped-data-format { description "Indicates that the server supports the 'cms-enveloped-data-format' identity."; } feature cms-encrypted-data-format { description "Indicates that the server supports the 'cms-encrypted-data-format' identity."; } feature p10-csr-format { description "Indicates that the server implements support for generating P10-based CSRs, as defined in RFC 2986."; reference "RFC 2986: PKCS #10: Certification Request Syntax Specification Version 1.7"; } feature csr-generation { description "Indicates that the server implements the 'generate-csr' action."; } feature certificate-expiration-notification { description "Indicates that the server implements the 'certificate-expiration' notification."; } feature cleartext-passwords { description "Indicates that the server supports cleartext passwords."; } feature encrypted-passwords { description "Indicates that the server supports password encryption."; } feature cleartext-symmetric-keys { description "Indicates that the server supports cleartext symmetric keys."; } feature hidden-symmetric-keys { description "Indicates that the server supports hidden keys."; } feature encrypted-symmetric-keys { description "Indicates that the server supports encryption of symmetric keys."; } feature cleartext-private-keys { description "Indicates that the server supports cleartext private keys."; } feature hidden-private-keys { description "Indicates that the server supports hidden keys."; } feature encrypted-private-keys { description "Indicates that the server supports encryption of private keys."; } /*************************************************/ /* Base Identities for Key Format Structures */ /*************************************************/ identity symmetric-key-format { description "Base key-format identity for symmetric keys."; } identity public-key-format { description "Base key-format identity for public keys."; } identity private-key-format { description "Base key-format identity for private keys."; } /****************************************************/ /* Identities for Private Key Format Structures */ /****************************************************/ identity rsa-private-key-format { base private-key-format; description "Indicates that the private key value is encoded as an RSAPrivateKey (from RFC 8017), encoded using ASN.1 distinguished encoding rules (DER), as specified in ITU-T X.690."; reference "RFC 8017: PKCS #1: RSA Cryptography Specifications Version 2.2 ITU-T X.690: Information technology - ASN.1 encoding rules: Specification of Basic Encoding Rules (BER), Canonical Encoding Rules (CER) and Distinguished Encoding Rules (DER) 02/2021."; } identity ec-private-key-format { base private-key-format; description "Indicates that the private key value is encoded as an ECPrivateKey (from RFC 5915), encoded using ASN.1 distinguished encoding rules (DER), as specified in ITU-T X.690."; reference "RFC 5915: Elliptic Curve Private Key Structure ITU-T X.690: Information technology - ASN.1 encoding rules: Specification of Basic Encoding Rules (BER), Canonical Encoding Rules (CER) and Distinguished Encoding Rules (DER) 02/2021."; } identity one-asymmetric-key-format { if-feature "one-asymmetric-key-format"; base private-key-format; description "Indicates that the private key value is a CMS OneAsymmetricKey structure, as defined in RFC 5958, encoded using ASN.1 distinguished encoding rules (DER), as specified in ITU-T X.690."; reference "RFC 5958: Asymmetric Key Packages ITU-T X.690: Information technology - ASN.1 encoding rules: Specification of Basic Encoding Rules (BER), Canonical Encoding Rules (CER) and Distinguished Encoding Rules (DER) 02/2021."; } /***************************************************/ /* Identities for Public Key Format Structures */ /***************************************************/ identity ssh-public-key-format { base public-key-format; description "Indicates that the public key value is an SSH public key, as specified by RFC 4253, Section 6.6, i.e.: string certificate or public key format identifier byte[n] key/certificate data."; reference "RFC 4253: The Secure Shell (SSH) Transport Layer Protocol"; } identity subject-public-key-info-format { base public-key-format; description "Indicates that the public key value is a SubjectPublicKeyInfo structure, as described in RFC 5280 encoded using ASN.1 distinguished encoding rules (DER), as specified in ITU-T X.690."; reference "RFC 5280: Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL) Profile ITU-T X.690: Information technology - ASN.1 encoding rules: Specification of Basic Encoding Rules (BER), Canonical Encoding Rules (CER) and Distinguished Encoding Rules (DER) 02/2021."; } /******************************************************/ /* Identities for Symmetric Key Format Structures */ /******************************************************/ identity octet-string-key-format { base symmetric-key-format; description "Indicates that the key is encoded as a raw octet string. The length of the octet string MUST be appropriate for the associated algorithm's block size. The identity of the associated algorithm is outside the scope of this specification. This is also true when the octet string has been encrypted."; } identity one-symmetric-key-format { if-feature "one-symmetric-key-format"; base symmetric-key-format; description "Indicates that the private key value is a CMS OneSymmetricKey structure, as defined in RFC 6031, encoded using ASN.1 distinguished encoding rules (DER), as specified in ITU-T X.690."; reference "RFC 6031: Cryptographic Message Syntax (CMS) Symmetric Key Package Content Type ITU-T X.690: Information technology - ASN.1 encoding rules: Specification of Basic Encoding Rules (BER), Canonical Encoding Rules (CER) and Distinguished Encoding Rules (DER) 02/2021."; } /*************************************************/ /* Identities for Encrypted Value Structures */ /*************************************************/ identity encrypted-value-format { description "Base format identity for encrypted values."; } identity symmetrically-encrypted-value-format { if-feature "symmetrically-encrypted-value-format"; base encrypted-value-format; description "Base format identity for symmetrically encrypted values."; } identity asymmetrically-encrypted-value-format { if-feature "asymmetrically-encrypted-value-format"; base encrypted-value-format; description "Base format identity for asymmetrically encrypted values."; } identity cms-encrypted-data-format { if-feature "cms-encrypted-data-format"; base symmetrically-encrypted-value-format; description "Indicates that the encrypted value conforms to the 'encrypted-data-cms' type with the constraint that the 'unprotectedAttrs' value is not set."; reference "RFC 5652: Cryptographic Message Syntax (CMS) ITU-T X.690: Information technology - ASN.1 encoding rules: Specification of Basic Encoding Rules (BER), Canonical Encoding Rules (CER) and Distinguished Encoding Rules (DER) 02/2021."; } identity cms-enveloped-data-format { if-feature "cms-enveloped-data-format"; base asymmetrically-encrypted-value-format; description "Indicates that the encrypted value conforms to the 'enveloped-data-cms' type with the following constraints: The EnvelopedData structure MUST have exactly one 'RecipientInfo'. If the asymmetric key supports public key cryptography (e.g., RSA), then the 'RecipientInfo' must be a 'KeyTransRecipientInfo' with the 'RecipientIdentifier' using a 'subjectKeyIdentifier' with the value set using 'method 1' in RFC 7093 over the recipient's public key. Otherwise, if the asymmetric key supports key agreement (e.g., ECC), then the 'RecipientInfo' must be a 'KeyAgreeRecipientInfo'. The 'OriginatorIdentifierOrKey' value must use the 'OriginatorPublicKey' alternative. The 'UserKeyingMaterial' value must not be present. There must be exactly one 'RecipientEncryptedKeys' value having the 'KeyAgreeRecipientIdentifier' set to 'rKeyId' with the value set using 'method 1' in RFC 7093 over the recipient's public key."; reference "RFC 5652: Cryptographic Message Syntax (CMS) RFC 7093: Additional Methods for Generating Key Identifiers Values ITU-T X.690: Information technology - ASN.1 encoding rules: Specification of Basic Encoding Rules (BER), Canonical Encoding Rules (CER) and Distinguished Encoding Rules (DER) 02/2021."; } /*********************************************************/ /* Identities for Certificate Signing Request Formats */ /*********************************************************/ identity csr-format { description "A base identity for the certificate signing request formats. Additional derived identities MAY be defined by future efforts."; } identity p10-csr-format { if-feature "p10-csr-format"; base csr-format; description "Indicates the 'CertificationRequest' structure defined in RFC 2986."; reference "RFC 2986: PKCS #10: Certification Request Syntax Specification Version 1.7"; } /***************************************************/ /* Typedefs for ASN.1 structures from RFC 2986 */ /***************************************************/ typedef csr-info { type binary; description "A CertificationRequestInfo structure, as defined in RFC 2986, encoded using ASN.1 distinguished encoding rules (DER), as specified in ITU-T X.690."; reference "RFC 2986: PKCS #10: Certification Request Syntax Specification Version 1.7 ITU-T X.690: Information technology - ASN.1 encoding rules: Specification of Basic Encoding Rules (BER), Canonical Encoding Rules (CER) and Distinguished Encoding Rules (DER) 02/2021."; } typedef p10-csr { type binary; description "A CertificationRequest structure, as specified in RFC 2986, encoded using ASN.1 distinguished encoding rules (DER), as specified in ITU-T X.690."; reference "RFC 2986: PKCS #10: Certification Request Syntax Specification Version 1.7 ITU-T X.690: Information technology - ASN.1 encoding rules: Specification of Basic Encoding Rules (BER), Canonical Encoding Rules (CER) and Distinguished Encoding Rules (DER) 02/2021."; } /***************************************************/ /* Typedefs for ASN.1 structures from RFC 5280 */ /***************************************************/ typedef x509 { type binary; description "A Certificate structure, as specified in RFC 5280, encoded using ASN.1 distinguished encoding rules (DER), as specified in ITU-T X.690."; reference "RFC 5280: Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL) Profile ITU-T X.690: Information technology - ASN.1 encoding rules: Specification of Basic Encoding Rules (BER), Canonical Encoding Rules (CER) and Distinguished Encoding Rules (DER) 02/2021."; } typedef crl { type binary; description "A CertificateList structure, as specified in RFC 5280, encoded using ASN.1 distinguished encoding rules (DER), as specified in ITU-T X.690."; reference "RFC 5280: Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL) Profile ITU-T X.690: Information technology - ASN.1 encoding rules: Specification of Basic Encoding Rules (BER), Canonical Encoding Rules (CER) and Distinguished Encoding Rules (DER) 02/2021."; } /***************************************************/ /* Typedefs for ASN.1 structures from RFC 6960 */ /***************************************************/ typedef oscp-request { type binary; description "A OCSPRequest structure, as specified in RFC 6960, encoded using ASN.1 distinguished encoding rules (DER), as specified in ITU-T X.690."; reference "RFC 6960: X.509 Internet Public Key Infrastructure Online Certificate Status Protocol - OCSP ITU-T X.690: Information technology - ASN.1 encoding rules: Specification of Basic Encoding Rules (BER), Canonical Encoding Rules (CER) and Distinguished Encoding Rules (DER) 02/2021."; } typedef oscp-response { type binary; description "A OCSPResponse structure, as specified in RFC 6960, encoded using ASN.1 distinguished encoding rules (DER), as specified in ITU-T X.690."; reference "RFC 6960: X.509 Internet Public Key Infrastructure Online Certificate Status Protocol - OCSP ITU-T X.690: Information technology - ASN.1 encoding rules: Specification of Basic Encoding Rules (BER), Canonical Encoding Rules (CER) and Distinguished Encoding Rules (DER) 02/2021."; } /***********************************************/ /* Typedefs for ASN.1 structures from 5652 */ /***********************************************/ typedef cms { type binary; description "A ContentInfo structure, as specified in RFC 5652, encoded using ASN.1 distinguished encoding rules (DER), as specified in ITU-T X.690."; reference "RFC 5652: Cryptographic Message Syntax (CMS) ITU-T X.690: Information technology - ASN.1 encoding rules: Specification of Basic Encoding Rules (BER), Canonical Encoding Rules (CER) and Distinguished Encoding Rules (DER) 02/2021."; } typedef data-content-cms { type cms; description "A CMS structure whose top-most content type MUST be the data content type, as described by Section 4 in RFC 5652."; reference "RFC 5652: Cryptographic Message Syntax (CMS)"; } typedef signed-data-cms { type cms; description "A CMS structure whose top-most content type MUST be the signed-data content type, as described by Section 5 in RFC 5652."; reference "RFC 5652: Cryptographic Message Syntax (CMS)"; } typedef enveloped-data-cms { type cms; description "A CMS structure whose top-most content type MUST be the enveloped-data content type, as described by Section 6 in RFC 5652."; reference "RFC 5652: Cryptographic Message Syntax (CMS)"; } typedef digested-data-cms { type cms; description "A CMS structure whose top-most content type MUST be the digested-data content type, as described by Section 7 in RFC 5652."; reference "RFC 5652: Cryptographic Message Syntax (CMS)"; } typedef encrypted-data-cms { type cms; description "A CMS structure whose top-most content type MUST be the encrypted-data content type, as described by Section 8 in RFC 5652."; reference "RFC 5652: Cryptographic Message Syntax (CMS)"; } typedef authenticated-data-cms { type cms; description "A CMS structure whose top-most content type MUST be the authenticated-data content type, as described by Section 9 in RFC 5652."; reference "RFC 5652: Cryptographic Message Syntax (CMS)"; } /*********************************************************/ /* Typedefs for ASN.1 structures related to RFC 5280 */ /*********************************************************/ typedef trust-anchor-cert-x509 { type x509; description "A Certificate structure that MUST encode a self-signed root certificate."; } typedef end-entity-cert-x509 { type x509; description "A Certificate structure that MUST encode a certificate that is neither self-signed nor having Basic constraint CA true."; } /*********************************************************/ /* Typedefs for ASN.1 structures related to RFC 5652 */ /*********************************************************/ typedef trust-anchor-cert-cms { type signed-data-cms; description "A CMS SignedData structure that MUST contain the chain of X.509 certificates needed to authenticate the certificate presented by a client or end-entity. The CMS MUST contain only a single chain of certificates. The client or end-entity certificate MUST only authenticate to the last intermediate CA certificate listed in the chain. In all cases, the chain MUST include a self-signed root certificate. In the case where the root certificate is itself the issuer of the client or end-entity certificate, only one certificate is present. This CMS structure MAY (as applicable where this type is used) also contain suitably fresh (as defined by local policy) revocation objects with which the device can verify the revocation status of the certificates. This CMS encodes the degenerate form of the SignedData structure (RFC 5652, Section 5.2) that is commonly used to disseminate X.509 certificates and revocation objects (RFC 5280)."; reference "RFC 5280: Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL) Profile. RFC 5652: Cryptographic Message Syntax (CMS)"; } typedef end-entity-cert-cms { type signed-data-cms; description "A CMS SignedData structure that MUST contain the end entity certificate itself, and MAY contain any number of intermediate certificates leading up to a trust anchor certificate. The trust anchor certificate MAY be included as well. The CMS MUST contain a single end entity certificate. The CMS MUST NOT contain any spurious certificates. This CMS structure MAY (as applicable where this type is used) also contain suitably fresh (as defined by local policy) revocation objects with which the device can verify the revocation status of the certificates. This CMS encodes the degenerate form of the SignedData structure (RFC 5652, Section 5.2) that is commonly used to disseminate X.509 certificates and revocation objects (RFC 5280)."; reference "RFC 5280: Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL) Profile. RFC 5652: Cryptographic Message Syntax (CMS)"; } /*****************/ /* Groupings */ /*****************/ grouping encrypted-value-grouping { description "A reusable grouping for a value that has been encrypted by a referenced symmetric or asymmetric key."; container encrypted-by { nacm:default-deny-write; description "An empty container enabling a reference to the key that encrypted the value to be augmented in. The referenced key MUST be a symmetric key or an asymmetric key. A symmetric key MUST be referenced via a leaf node called 'symmetric-key-ref'. An asymmetric key MUST be referenced via a leaf node called 'asymmetric-key-ref'. The leaf nodes MUST be direct descendants in the data tree, and MAY be direct descendants in the schema tree (e.g., choice/case statements are allowed, but not a container)."; } leaf encrypted-value-format { type identityref { base encrypted-value-format; } mandatory true; description "Identifies the format of the 'encrypted-value' leaf. If 'encrypted-by' points to a symmetric key, then a 'symmetrically-encrypted-value-format' based identity MUST be set (e.g., cms-encrypted-data-format). If 'encrypted-by' points to an asymmetric key, then an 'asymmetrically-encrypted-value-format' based identity MUST be set (e.g., cms-enveloped-data-format)."; } leaf encrypted-value { nacm:default-deny-write; type binary; must '../encrypted-by'; mandatory true; description "The value, encrypted using the referenced symmetric or asymmetric key. The value MUST be encoded using the format associated with the 'encrypted-value-format' leaf."; } } grouping password-grouping { description "A password used for authenticating to a remote system. The 'ianach:crypt-hash' typedef from RFC 7317 should be used instead when needing a password to authencate a local account."; choice password-type { nacm:default-deny-write; mandatory true; description "Choice between password types."; case cleartext-password { if-feature "cleartext-passwords"; leaf cleartext-password { nacm:default-deny-all; type string; description "The cleartext value of the password."; } } case encrypted-password { if-feature "encrypted-passwords"; container encrypted-password { description "A container for the encrypted password value."; uses encrypted-value-grouping; } } } } grouping symmetric-key-grouping { description "A symmetric key."; leaf key-format { nacm:default-deny-write; type identityref { base symmetric-key-format; } description "Identifies the symmetric key's format. Implementations SHOULD ensure that the incoming symmetric key value is encoded in the specified format. For encrypted keys, the value is the decrypted key's format (i.e., the 'encrypted-value-format' conveys the encrypted key's format."; } choice key-type { nacm:default-deny-write; mandatory true; description "Choice between key types."; case cleartext-symmetric-key { leaf cleartext-symmetric-key { if-feature "cleartext-symmetric-keys"; nacm:default-deny-all; type binary; must '../key-format'; description "The binary value of the key. The interpretation of the value is defined by the 'key-format' field."; } } case hidden-symmetric-key { if-feature "hidden-symmetric-keys"; leaf hidden-symmetric-key { type empty; must 'not(../key-format)'; description "A hidden key is not exportable, and not extractable, and therefore, it is of type 'empty' as its value is inaccessible via management interfaces. Though hidden to users, such keys are not hidden to the server and may be referenced by configuration to indicate which key a server should use for a cryptographic operation. How such keys are created is outside the scope of this module."; } } case encrypted-symmetric-key { if-feature "encrypted-symmetric-keys"; container encrypted-symmetric-key { must '../key-format'; description "A container for the encrypted symmetric key value. The interpretation of the 'encrypted-value' node is via the 'key-format' node"; uses encrypted-value-grouping; } } } } grouping public-key-grouping { description "A public key."; leaf public-key-format { nacm:default-deny-write; type identityref { base public-key-format; } mandatory true; description "Identifies the public key's format. Implementations SHOULD ensure that the incoming public key value is encoded in the specified format."; } leaf public-key { nacm:default-deny-write; type binary; mandatory true; description "The binary value of the public key. The interpretation of the value is defined by 'public-key-format' field."; } } grouping private-key-grouping { description "A private key."; leaf private-key-format { nacm:default-deny-write; type identityref { base private-key-format; } description "Identifies the private key's format. Implementations SHOULD ensure that the incoming private key value is encoded in the specified format. For encrypted keys, the value is the decrypted key's format (i.e., the 'encrypted-value-format' conveys the encrypted key's format."; } choice private-key-type { nacm:default-deny-write; mandatory true; description "Choice between key types."; case cleartext-private-key { if-feature "cleartext-private-keys"; leaf cleartext-private-key { nacm:default-deny-all; type binary; must '../private-key-format'; description "The value of the binary key The key's value is interpreted by the 'private-key-format' field."; } } case hidden-private-key { if-feature "hidden-private-keys"; leaf hidden-private-key { type empty; must 'not(../private-key-format)'; description "A hidden key. It is of type 'empty' as its value is inaccessible via management interfaces. Though hidden to users, such keys are not hidden to the server and and may be referenced by configuration to indicate which key a server should use for a cryptographic operation. How such keys are created is outside the scope of this module."; } } case encrypted-private-key { if-feature "encrypted-private-keys"; container encrypted-private-key { must '../private-key-format'; description "A container for the encrypted asymmetric private key value. The interpretation of the 'encrypted-value' node is via the 'private-key-format' node"; uses encrypted-value-grouping; } } } } grouping asymmetric-key-pair-grouping { description "A private key and, optionally, its associated public key. Implementations MUST ensure that the two keys, when both are specified, are a matching pair."; uses public-key-grouping { refine public-key-format { mandatory false; } refine public-key { mandatory false; } } uses private-key-grouping; } grouping certificate-expiration-grouping { description "A notification for when a certificate is about to, or already has, expired."; notification certificate-expiration { if-feature "certificate-expiration-notification"; description "A notification indicating that the configured certificate is either about to expire or has already expired. When to send notifications is an implementation specific decision, but it is RECOMMENDED that a notification be sent once a month for 3 months, then once a week for four weeks, and then once a day thereafter until the issue is resolved."; leaf expiration-date { type yang:date-and-time; mandatory true; description "Identifies the expiration date on the certificate."; } } } grouping trust-anchor-cert-grouping { description "A trust anchor certificate, and a notification for when it is about to (or already has) expire."; leaf cert-data { nacm:default-deny-all; type trust-anchor-cert-cms; description "The binary certificate data for this certificate."; } uses certificate-expiration-grouping; } grouping end-entity-cert-grouping { description "An end entity certificate, and a notification for when it is about to (or already has) expire. Implementations SHOULD assert that, where used, the end entity certificate contains the expected public key."; leaf cert-data { nacm:default-deny-all; type end-entity-cert-cms; description "The binary certificate data for this certificate."; } uses certificate-expiration-grouping; } grouping generate-csr-grouping { description "Defines the 'generate-csr' action."; action generate-csr { if-feature "csr-generation"; nacm:default-deny-all; description "Generates a certificate signing request structure for the associated asymmetric key using the passed subject and attribute values. This action statement is only available when the associated 'public-key-format' node's value is 'subject-public-key-info-format'."; input { leaf csr-format { type identityref { base csr-format; } mandatory true; description "Specifies the format for the returned certificate."; } leaf csr-info { type csr-info; mandatory true; description "A CertificationRequestInfo structure, as defined in RFC 2986. Enables the client to provide a fully-populated CertificationRequestInfo structure that the server only needs to sign in order to generate the complete 'CertificationRequest' structure to return in the 'output'. The 'AlgorithmIdentifier' field contained inside the 'SubjectPublicKeyInfo' field MUST be one known to be supported by the device."; reference "RFC 2986: PKCS #10: Certification Request Syntax Specification RFC AAAA: YANG Data Types and Groupings for Cryptography"; } } output { choice csr-type { mandatory true; description "A choice amongst certificate signing request formats. Additional formats MAY be augmented into this 'choice' statement by future efforts."; case p10-csr { leaf p10-csr { type p10-csr; description "A CertificationRequest, as defined in RFC 2986."; } description "A CertificationRequest, as defined in RFC 2986."; reference "RFC 2986: PKCS #10: Certification Request Syntax Specification RFC AAAA: YANG Data Types and Groupings for Cryptography"; } } } } } // generate-csr-grouping grouping asymmetric-key-pair-with-cert-grouping { description "A private/public key pair and an associated certificate. Implementations MUST assert that the certificate contains the matching public key."; uses asymmetric-key-pair-grouping; uses end-entity-cert-grouping; uses generate-csr-grouping; } // asymmetric-key-pair-with-cert-grouping grouping asymmetric-key-pair-with-certs-grouping { description "A private/public key pair and a list of associated certificates. Implementations MUST assert that certificates contain the matching public key."; uses asymmetric-key-pair-grouping; container certificates { nacm:default-deny-write; description "Certificates associated with this asymmetric key."; list certificate { key "name"; description "A certificate for this asymmetric key."; leaf name { type string; description "An arbitrary name for the certificate."; } uses end-entity-cert-grouping { refine "cert-data" { mandatory true; } } } } uses generate-csr-grouping; } // asymmetric-key-pair-with-certs-grouping }